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Abstract. Macroscopic quantum coherence and spin-phase interference between excited levels
in single-domain ferromagnetic particles in a magnetic field along the hard-anisotropy axis are
studied. The system has a general structure of the magnetocrystalline anisotropy, such as one
showing a biaxial, trigonal, tetragonal, or hexagonal symmetry. This study not only yields
the previously obtained spin-phase interference results for the ground-state tunnelling, but also
provides a generalization of the Kramers degeneracy to coherent spin tunnelling in low-lying
excited states. These analytical results are found to be in good agreement with those from numerical
diagonalization. We also discuss the transition from quantum to classical behaviour and the possible
relevance to experiment.

1. Introduction

Macroscopic quantum phenomena (MQP) in nanoscale magnets have received much attention
in recent years both from theorists and from experimentalists [1]. A number of nanoscale
samples in different systems have been identified as promising candidates as regards the
observation of macroscopic quantum tunnelling (MQT) and coherence (MQC). A perhaps
even more interesting finding is that the topological Wess–Zumino term, or Berry phase [2],
can lead to remarkable spin-parity effects for some spin systems with high symmetries [1,3–8].
It has been shown that the ground-state tunnel splitting is completely suppressed to zero for
half-integer total spins in biaxial ferromagnetic (FM) particles in the absence of a magnetic field
due to the destructive phase interference between topologically different tunnelling paths [3].
However, the phase interference is constructive for integer spins, and hence the splitting is
non-zero. The spin-parity effects can be interpreted as Kramers’ degeneracy at zero magnetic
field, but in the case of a field along the hard-anisotropy axis, these effects are not related to
the Kramers theorem since the field breaks the time-reversal symmetry [4, 6]. Experiments
on Fe8 showed that the oscillation of the tunnel splitting as a function of the magnetic field
along the hard-anisotropy axis was due to quantum interference of two tunnel paths with
opposite windings, which was direct evidence for the topological part of the quantum spin
phase (Berry phase) in a magnetic system [7]. Recent theoretical and experimental studies
include investigations of the quantum relaxation in magnetic molecules [9], the spin tunnelling
in a swept magnetic field [10], the thermally activated resonant tunnelling—with the help of
perturbation theory [11] and exact diagonalization [12], the auxiliary-particle method [13],
the discrete WKB method and a non-perturbation calculation [14], the non-adiabatic Landau–
Zener model [15], calculation based on exact spin-coordinate correspondence [16], and the
effects caused by the higher-order term and the nuclear spins on the tunnel splitting of Fe8 [17].
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Up to now, theoretical studies have been focused on spin-phase interference at excited
levels in simple biaxial FM particles [8] or at ground states in FM particles with a general
structure of the magnetocrystalline anisotropy [7]. However, spin-phase interference between
excited-level tunnelling paths is unknown for FM particles with a general structure of the
magnetocrystalline anisotropy. The purpose of this paper is to extend the previous results to
resonant quantum tunnelling and spin-phase interference at excited levels for single-domain
FM particles in the presence of a magnetic field along the hard-anisotropy axis. Moreover, the
system considered in this paper shows a general structure of the magnetocrystalline anisotropy,
such as one showing a biaxial, trigonal, tetragonal, or hexagonal symmetry around ẑ, which has
two, three, four, or six degenerate easy directions in the basal plane at zero field. Therefore,
our study provides a non-trivial generalization of the Kramers degeneracy to coherent spin
tunnelling in ground states as well as low-lying excited states in a magnetic field.

To compute the tunnel splitting, we consider the imaginary-time transition amplitude in
the spin-coherent-state path-integral representation. Integrating out the moment in the path
integral, the spin-tunnelling problem is mapped onto a moving-particle problem in a one-
dimensional periodic potentialU(φ). By applying the periodic instanton method, we obtain the
low-lying tunnel splittings of the nth degenerate excited states between neighbouring potential
wells. The periodic potential U(φ) can be regarded as a one-dimensional superlattice. The
general translation symmetry results in the energy band structure. By using the Bloch theorem
and the tight-binding approximation, we obtain the low-lying energy level spectrum of the
excited states. Our results show that the tunnel splittings depend significantly on the parity of
the total spins of FM particles. An external magnetic field yields an additional contribution to
the Berry phase, resulting in oscillating field dependence of the tunnel splittings for both the
integer and half-integer total spins. These analytical results are found to be in good agreement
with the exact-diagonalization computation. And the structures of the energy level spectra for
the trigonal, tetragonal, and hexagonal symmetries are found to be much more complex than
that for biaxial symmetry. The transition from quantum to classical behaviour is also studied
and the second-order phase transition is shown. Another important conclusion is that the spin-
parity effects can be reflected in thermodynamic quantities for the low-lying tunnelling levels.
This may provide an experimental test for the spin-parity or topological phase interference
effects in single-domain FM nanoparticles.

2. The physical model

For a spin-tunnelling problem, the tunnel splitting for MQC or the decay rate for MQT is
determined by the imaginary-time transition amplitude from an initial state |i〉 to a final state
|f 〉 as follows:

KE = 〈f | e−HT |i〉 =
∫

D� exp(−SE) (1)

where D� = sin θ dθ dφ is the measure of the path integral. For FM particles at sufficiently
low temperature, all the spins are locked together by the strong exchange interaction, and
therefore only the orientation of magnetization M can change and not its absolute value. In
the spin-coherent-state representation the Euclidean action SE can be written as

SE(θ, φ) = V

h̄

∫
dτ

[
i
M0

γ

(
dφ

dτ

)
− i
M0

γ

(
dφ

dτ

)
cos θ + E(θ, φ)

]
(2)

where M0 = |M | = h̄γ S/V , S is the total spin, V is the volume of the particle, and γ is the
gyromagnetic ratio. The first two terms in equation (2) define the Wess–Zumino term (or Berry
phase) which arises from the non-orthogonality of the spin coherent states. The Wess–Zumino
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term has a simple topological interpretation. For a closed path, this term equals −iS times
the area swept out on the unit sphere between the path and the north pole. The first term in
equation (2) is a total imaginary-time derivative, which has no effect on the classical equations
of motion, but it is of crucial importance for the spin-parity effects.

It can be noted that for δSE = 0, the action equation (2) reproduces the classical equation
of motion whose solution is known as an instanton, and describes the (1 ⊕ 1)-dimensional
dynamics in the Hamiltonian formulation, which is based on the canonical coordinates φ and
Pφ = S(1 − cos θ). According to the standard instanton technique in the spin-coherent-state
path-integral representation, the tunnelling rate� for MQT and the tunnel splitting� for MQC
are given by [1]

� (or �) = Aωp
(Scl

2π

)1/2

e−Scl (3)

where ωp is the oscillation frequency in the well, Scl is the classical action, and the prefactor
A originates from the fluctuations about the classical path. It can be noted that equation (3) is
based on quantum tunnelling at the level of the ground state, and the temperature dependence
of the tunnelling frequency (i.e., tunnelling at excited levels) is not taken into account. The
instanton technique is suitable only for the evaluation of the tunnelling rate or the tunnel
splitting at the vacuum level, since the usual (vacuum) instantons satisfy the vacuum boundary
conditions. Recently, different types of pseudoparticle configuration (periodic or non-vacuum
instantons) have been found which satisfy periodic boundary conditions [8].

For a particle moving in a double-well-like potentialU(x), the WKB approximation gives
the tunnel splitting of the nth excited levels as [18]

�En = ω(En)

π
exp [−S(En)] (4)

and the imaginary-time action is

S(En) = 2
√

2m
∫ x2(En)

x1(En)

dx
√
U(x)− En (5)

where x1,2(En) are the turning points for the particle oscillating in the inverted potential −U(x).
ω(En) = 2π/t (En) is the frequency of oscillations at the energy level En, and t (En) is the
period of the real-time oscillation in the potential well:

t (En) =
√

2m
∫ x4(En)

x3(En)

dx√
En − U(x) (6)

where x3,4(En) are the classical turning points for the particle oscillating inside U(x). The
functional-integral and WKB methods show that for the potentials parabolic near the bottom,
the result of equation (4) should be multiplied by [19, 20]√

π

e

(2n + 1)n+1/2

2nenn!
.

This factor approaches 1 with increasing n and it is very close to 1 for all n: 1.075 for n = 0,
1.028 for n = 1, 1.017 for n = 2, etc. Stirling’s formula for n! shows that this factor tends
to 1 as n → ∞. Therefore, this correction factor does not change much, in front of the
exponentially small action term in equation (4).

3. MQC for biaxial symmetry

In this section, we consider an FM system with biaxial symmetry in a magnetic field along the
hard-anisotropy axis. The magnetocrystalline anisotropy energy can be written as

E(θ, φ) = K1 cos2 θ +K2 sin2 θ sin2 φ −M0H cos θ + E0 (7)
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where K1 and K2 are the longitudinal and the transverse anisotropy coefficients satisfying
K1 � K2 > 0. E0 is a constant which makesE(θ, φ) zero for the initial orientation. Although
the tunnel splittings and spin-phase interference effects of this system can be easily obtained
by direct numerical diagonalization of the Hamiltonian (see references [4] and [7], and in the
following), it is of interest to understand these features analytically.

Adding some constants, we rewrite equation (7) as

E(θ, φ) = K1(cos θ − cos θ0)
2 +K2 sin2 θ sin2 φ (8)

where cos θ0 = M0H/(2K1). As K1 � K2 > 0, the magnetization vector is forced to
lie in the θ = θ0 plane, and therefore the fluctuations of θ about θ0 are small. Introducing
θ = θ0 + α (|α| � 1), the total energy E(θ, φ) reduces to

E(α, φ) ≈ K1 sin2 θ0 α
2 +K2 sin2 θ0 sin2 φ + 2K2 sin θ0 cos θ0 sin2 φ α. (9)

The ground state of the FM particle with biaxial symmetry corresponds to the magnetization
vector pointing in one of the two degenerate easy directions: θ = θ0 and φ = 0, π ; other
energy minima repeat the two states with period 2π .

Performing the Gaussian integration over α, we can map the spin system onto a moving-
particle problem in a one-dimensional potential well. Now the transition amplitude becomes

KE = exp

{
−iS

[
1 −

(
1 +

1

2
λ

)
cos θ0

]
(φf − φi)

} ∫
dφ exp(−SE [φ]) (10)

with the effective Euclidean action

SE [φ] =
∫

dτ

[
1

2
m

(
dφ

dτ

)2

+ U(φ)

]
(11)

where

λ = K2

K1
m = h̄S2

2K1V
U(φ) = K2V

h̄
sin2 θ0 sin2 φ.

The potential U(φ) is periodic with period π , and there are two minima in the entire region
2π . We may regard the potentialU(φ) as a superlattice with lattice constant π and total length
2π , and we can derive the energy spectrum by applying the Bloch theorem and the tight-
binding approximation. The translation symmetry is ensured by the possibility of successive
2π extensions.

Now we apply the periodic instanton method to evaluate the tunnel splittings of excited
levels. The periodic instanton configuration φp which minimizes the Euclidean action of
equation (11) satisfies the equation of motion

1

2
m

(
dφp
dτ

)2

− U(φp) = −E (12)

where E > 0 is a constant of integration, which can be viewed as the classical energy of the
pseudoparticle configuration. Then we obtain the kink solution as

sin2 φp = 1 − k2 sn2(ω1τ, k). (13)

sn(ω1τ, k) is the Jacobian elliptic sine function of modulus k, where

k2 = 1 − h̄E

K2V sin2 θ0
(14a)

and

ω1 = 2
V

h̄S

√
K1K2 sin θ0. (14b)



Wess–Zumino–Berry phase interference 7785

In the case of resonant quantum tunnelling in the ground state with zero magnetic field,
i.e., E → 0, k → 1, sn(u, 1)→ tanh u, λ→ 0, we have

cosφp = tanh(ω1τ) (15)

which is exactly the vacuum instanton solution derived in reference [21].
The classical action or the WKB exponent can be obtained by integrating the Euclidean

action equation (11) with the above periodic instanton solution. The result is found to be

Sp =
∫ β

−β
dτ

[
1

2
m

(
dφp
dτ

)2

+ U(φp)

]
= W + 2Eβ (16)

with

W = 2
√
λS sin θ0

[
E(k)− (1 − k2)K(k)

]
(17)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively. In the low-energy limit where E is much less than the barrier height, i.e., k′2 =
1 − k2 = h̄E/K2V sin2 θ0 � 1, we can expand K(k) and E(k) in equation (17) in powers of
k′ to include terms like k′2 and k′2 ln(4/k′):

E(k) = 1 +
1

2

[
ln

(
4

k′

)
− 1

2

]
k′2 + · · ·

K(k) = ln

(
4

k′

)
+

1

4

[
ln

(
4

k′

)
− 1

]
k′2 + · · · .

(18)

With the help of the small-oscillator approximation for energy near the bottom of the potential
well, E = Ebian = (n + 1

2 )ω1, equation (17) is expanded as

W = 2
√
λS sin θ0 −

(
n +

1

2

)
+

(
n +

1

2

)
ln

[
(n + 1

2 )

23
√
λS sin θ0

]
. (19)

Then the general formula, equation (4), gives the low-lying energy shift of the nth excited level
for FM particles with biaxial symmetry in a magnetic field along the hard-anisotropy axis as

h̄ �Ebian = 23/2

√
πn!

V

S

√
K1K2 sin θ0 (8

√
λS sin θ0)

n+1/2 exp(−2
√
λS sin θ0). (20)

It is to be noted that h̄ �Ebian is only the level shift induced by tunnelling between degenerate
excited states through a single barrier. The periodic potential U(φ) can be regarded as a one-
dimensional superlattice. Also, the general translation symmetry results in the energy band
structure, and the energy level spectrum can be determined by the Bloch theorem. It is easy to
show that if Ebian are the degenerate eigenvalues of the system with an infinitely high barrier,
the low-lying energy level spectrum is given by the following formula, with the help of the
tight-binding approximation:

Ebian = h̄Ebian − 2h̄ �Ebian cos[π(µ + ξ)] (21)

where µ = S[1 − (1 + 1
2λ) cos θ0], and ξ is the Bloch vector which can be 0 or 1 in the first

Brillouin zone. Equation (21) includes the contribution of the Wess–Zumino–Berry phase for
FM particles with biaxial symmetry at finite magnetic field. In the absence of a magnetic
field, the tunnel splitting is suppressed to zero for half-integer total spins by the destructively
interfering Wess–Zumino–Berry phase. This topological quenching effect is in good agreement
with the Kramers theorem since the system has time-reversal invariance at zero field. In
the presence of even a weak external magnetic field, this strict ‘selection rule’ is relaxed,
which leads to a finite tunnel splitting for half-integer total spins. The low-lying energy level
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spectrum is h̄Ebian − 2h̄ �Ebian cos(πS cos θ0), and h̄Ebian + 2h̄ �Ebian cos(πS cos θ0) for integer
total spins. However, the low-lying energy level spectrum is h̄Ebian − 2h̄ �Ebian sin(πS cos θ0),
and h̄Ebian + 2h̄ �Ebian sin(πS cos θ0) for half-integer total spins. Therefore the tunnel splitting
is �En = 4�Ebian |cos(πS cos θ0)| for integer spins, while the tunnel splitting is �En =
4�Ebian |sin(πS cos θ0)| for half-integer spins. The tunnel splitting will not be suppressed to
zero even if the total spin is a half-integer at finite magnetic field.

In figure 1, we plot the tunnel splitting in the magnetic field at the first excited level
(n = 1) for integer total spin S = 100 obtained by the analytical calculation and the exact-
diagonalization calculation. Here we take typical values of parameters for single-domain FM
nanoparticles, K1 = 106 erg cm−3, λ = 0.02, and the radius of the particle r = 5 nm. The
analytical result is found to be in good agreement with the numerical result, which confirms
the theoretical analysis.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0
0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 exactly diagonalization calculation
 analytical calculation

∆
ε 1(

10
-8
K

)

H(T)

Figure 1. The tunnel splitting �ε1 for biaxial FM particles at the first excited level (n = 1) as
a function of the field H for integer spins (S = 100) obtained by the analytical and the exact-
diagonalization calculations. Here K1 = 106 erg cm−3, λ = 0.02, and the radius of the particle
r = 5 nm.

In figure 2, we plot the dependence of the first-excited-level splitting on the magnetic field
for integer and half-integer total spins, where the oscillation with the field and the spin-parity
effects are clearly shown. And in figure 3, we show the tunnel splittings of the ground-state
level and the first excited level as functions of the magnetic field for integer total spins S = 100.
It is clear that the splitting is enhanced by quantum tunnelling at the excited levels.

Recently, spin systems have aroused considerable interest, with the discovery that they
provide examples which exhibit first- or second-order transitions between the classical and
quantum behaviour of the escape rate [22–24]. In general, transitions in a metastable system
can occur via quantum tunnelling through the barrier and the classical thermal activation.
It was shown that for a particle with mass m moving in a double-well potential U(x), the
behaviour of the energy-dependent period of the oscillations P(E) in the Euclidean potential
−U(x) determines the order of the quantum–classical transition [22, 23]. If P(E) increases
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Figure 2. The tunnel splitting �ε1 for biaxial FM particles at the first excited level (n = 1) as
a function of the field H , for integer (S = 100) and half-integer (S = 100.5) total spins. Here
K1 = 106 erg cm−3, λ = 0.02, and the radius of the particle r = 5 nm.
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Figure 3. The tunnel splittings �εn for biaxial FM particles at the ground level (n = 0) and the
first excited level (n = 1) as functions of the field H for integer (S = 100) total spins. Here
K1 = 106 erg cm−3, λ = 0.02, and the radius of the particle r = 5 nm.

monotonically with the amplitude of the oscillations, i.e., with decreasing energy E, the
transition is of second order. The crossover temperature for the second-order phase transition
is T (2)0 = ω̃0/2π , ω̃0 = √

[|U ′′(xsad)|/m], where xsad corresponds to the top (the saddle point)
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of the barrier, and ω̃0 is the frequency of the small oscillations near the bottom of the inverted
potential −U(x). If, however, the dependence of P(E) is non-monotonic, the first-order
crossover takes place.

Now we discuss the phase transition from classical to quantum behaviour in this model.
For the present case, the period of the periodic instanton is found to be

P(E) = 4

ω1
K(k).

The monotonically decreasing behaviour of P(E) is shown in figure 4, which shows that a
second-order phase transition takes place. We found that the frequency of the small oscillations
near the bottom of the inverted potential is

ω̃1 = 2
V

h̄S

√
K1K2 sin θ0.

The crossover temperature characterizing the quantum–classical transition is

kBT
(2)

0 = V

πS

√
K1K2 sin θ0. (22)
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=

K
2V
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n2 θ 0)

E/K
2
Vsin2

θ0

Figure 4. The relative period P(E)/P (E = K2V sin2 θ0) of the periodic instanton as a function
of the energy E/K2V sin2 θ0 in the domain 0 � h̄E � K2V sin2 θ0.

At the end of this section, we discuss the possible relevance to an experimental test for
spin-parity effects in single-domain FM nanoparticles. First we discuss the thermodynamic
behaviour of this system at very low temperature T ∼ T0 = h̄ �Ebia0 /kB . For FM particles
with biaxial crystal symmetry at such a low temperature, the partition function of the ground
state is found to be

Z = 2 exp(−βh̄Ebia0 ) cosh
[
2βh̄�Ebia0 cos(πS cos θ0)

]
(23a)

for integer spins, while

Z = 2 exp(−βh̄Ebia0 ) cosh
[
2βh̄�Ebia0 sin(πS cos θ0)

]
(23b)
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for half-integer spins, where Ebia0 = ω1/2. Then the specific heat is c = −T (∂2F/∂T 2), with
F = −kBT ln Z . For FM particles with biaxial crystal symmetry in the presence of a magnetic
field along the hard axis at sufficiently low temperatures, we obtain the specific heat as

c = 4kB(βh̄�Ebia0 )2
[cos(πS cos θ0)]

2{
cosh

[
2βh̄�Ebia0 cos(πS cos θ0)

]}2 (24a)

for integer spins, while

c = 4kB(βh̄�Ebia0 )2
[sin(πS cos θ0)]

2{
cosh

[
2βh̄�Ebia0 cos(πS cos θ0)

]}2 (24b)

for half-integer spins. In figure 5, we show the temperature dependence of the specific heat at
H/Hc = 0.2 for integer and half-integer total spins. It is clear that the specific heat for integer
spins is very different from that for half-integer spins at sufficiently low temperatures.
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0.0

0.1

0.2

0.3

0.4

0.5
0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

H/Hc=0.2
 S=100
 S=100.5

c/
k B

k
B
T/h∆ε0

bia

Figure 5. The low-temperature specific heat for biaxial FM particles with integer (S = 100) and
half-integer (S = 100.5) total spins. Here λ = K2/K1 = 0.02, H/Hc = 0.2.

When the temperature is higher, h̄ �Ebia0 � kBT < h̄ω1, the excited energy levels may
give a contribution to the partition function. Now the partition function is found to be

Z ≈ Z0

[
1 + (1 − e−βh̄ω1)(

√
2βh̄�Ebia0 cos(πµ))2I0(2q1e−βh̄ω1/2)

]
(25)

for both integer and half-integer spins. Here,

Z0 = 2e−βh̄ω1/2/(1 − e−βh̄ω1)

is the partition function in the well calculated for kBT � �U over the low-lying oscillator-like
states with Ebian = (n + 1/2)ω1;

I0(x) =
∑
n=0

(x/2)2n/(n!)2
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is the modified Bessel function, and q1 = 23
√
λS sin θ0 > 1. We define a characteristic

temperature T̃ that is a solution of the equation q1e−h̄ω1/2kB T̃ = 1. The temperature
T̃ = h̄ω1/2 ln q1 characterizes the crossover from thermally assisted tunnelling to the ground-
state tunnelling. Then we obtain the specific heat up to the order of (βh̄�Ebia0 )2 as

c = kB(βh̄ω1)
2 eβh̄ω1

(eβh̄ω1 − 1)2
+ kB(

√
2βh̄�Ebia0 cos(πµ))2

×
{[

2(1 − e−βh̄ω1) + 4(βh̄ω1)e
−βh̄ω1 − (βh̄ω1)

2e−βh̄ω1I0(2q1e−βh̄ω1/2)
]

− q1(βh̄ω1)

[
1

2
(5e−3βh̄ω1/2 − e−βh̄ω1/2) + 4(e−βh̄ω1/2 − e−3βh̄ω1/2)

]
× I ′

0(2q1e−βh̄ω1/2)

+ q2
1 (βh̄ω1)

2(e−βh̄ω1/2 − e−3βh̄ω1/2)I ′′
0 (2q1e−βh̄ω1/2)

}
(26)

for both integer and half-integer spins, where I ′
0 = −I1, and I ′′

0 = I2 − I1/x.

Iν(x) =
∑
n=0

(−1)n(x/2)2n+ν/n!�(n + ν + 1)

where � is the Gamma function.

4. MQC for trigonal, tetragonal, and hexagonal symmetries

In this section we will apply the method given in section 3 to study resonant quantum tunnelling
of magnetization in single-domain FM nanoparticles with trigonal, tetragonal, and hexagonal
symmetry. For the trigonal symmetry, the anisotropy energy is

E(θ, φ) = K1 cos2 θ −K2 sin3 θ cos(3φ)−M0H cos θ + E0 (27)

where K1 � K2 > 0. The energy minima of this system are at θ = θ0 and φ = 0, 2
3π,

4
3π ,

and other energy minima repeat the three states with period 2π . This problem can be mapped
onto a problem of one-dimensional motion by integrating out the fluctuations of θ about θ0,
and then the effective potential is

U(φ) = 2K2V

h̄
sin3 θ0 sin2

(
3

2
φ

)
. (28)

NowU(φ) is periodic with period 2
3π , and there are three minima in the entire region 2π . The

periodic instanton configuration with an energy E > 0 is found to be

sin2

(
3

2
φp

)
= 1 − k2 sn2(ω2τ, k) (29)

where

k =
√

1 − h̄E

2K2V sin3 θ0
ω2 = 3

√
2
V

h̄S

√
K1K2(sin θ0)

3/2.

The corresponding classical action is Sp = W + 2Eβ, with

W = 25/2

3

√
λS(sin θ0)

3/2
[
E(k)− (1 − k2)K(k)

]
. (30)
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The low-lying energy shift of the nth excited level is found to be

h̄ �E trin = 6√
πn!

V

S

√
K1K2(sin θ0)

3/2

(
29/2

3

√
λS(sin θ0)

3/2

)n+1/2

× exp

(
−25/2

3

√
λS(sin θ0)

3/2

)
. (31)

The periodic potential U(φ) can be viewed as a superlattice with lattice constant 2
3π and total

length 2π . Then the Bloch theorem gives the energy level spectrum of the nth excited level
E trin = (n + 1

2 )ω2 as

Etrin = h̄E trin − 2h̄ �E trin cos

[
2π

3
(µ + ξ)

]
(32)

where ξ = −1, 0, 1 in the first Brillouin zone. The crossover temperature for the second-order
phase transition is

kBT
(2)

0 = 3
√

2
V

πS

√
K1K2(sin θ0)

3/2. (33)

For the tetragonal symmetry,

E(θ, φ) = K1 cos2 θ +K2 sin4 θ −K ′
2 sin4 θ cos(4φ)−M0H cos θ + E0 (34)

where K1 � K2,K
′
2 > 0. The energy minima are at θ = θ0 and φ = 0, 1

2π, π,
3
2π , and

other energy minima repeat the four states with period 2π . The problem can be mapped onto
a problem of a particle moving in a one-dimensional potential:

U(φ) = 2K ′
2V

h̄
sin4 θ0 sin2(2φ). (35)

Now U(φ) is periodic with period 1
2π , and there are four minima in the entire region 2π . In

this case, the periodic instanton solution is

sin2(2φp) = 1 − k2 sn2(ω3τ, k) (36)

where

k =
√

1 − h̄E

2K ′
2V sin4 θ0

ω3 = 4
√

2
V

h̄S

√
K1K2 sin2 θ0.

The associated classical action is Sp = W + 2Eβ, with

W = 21/2
√
λS sin2 θ0

[
E(k)− (1 − k2)K(k)

]
. (37)

The low-lying energy shift of the nth excited level is

h̄ �E ten = 8√
πn!

V

S

√
K1K2 sin2 θ0 (2

5/2
√
λS sin2 θ0)

n+1/2 exp(−21/2
√
λS sin2 θ0). (38)

The periodic potential U(φ) can be viewed as a superlattice with lattice constant 1
2π and total

length 2π . For this case the energy level spectrum of the nth excited level E ten = (n + 1
2 )ω3 is

Eten = h̄E ten − 2h̄ �E ten cos
[π

2
(µ + ξ)

]
(39)

where ξ = −1, 0, 1, 2 in the first Brillouin zone. The crossover temperature is

kBT
(2)

0 = 25/2 V

πS

√
K1K2 sin2 θ0. (40)

For the hexagonal symmetry, the magnetocrystalline anisotropy energy is

E(θ, φ) = K1 cos2 θ +K2 sin4 θ +K3 sin6 θ −K ′
3 sin6 θ cos(6φ)−M0H cos θ + E0 (41)
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where K1 � K2,K3,K
′
3 > 0. The energy minima are at θ = θ0 and φ = 0, 1

3π , 2
3π , π , 4

3π ,
5
3π , and other energy minima repeat the six states with period 2π . Now the one-dimensional
effective potential is

U(φ) = 2K ′
3V

h̄
sin6 θ0 sin2(3φ). (42)

For the present case, U(φ) is periodic with period 1
3π , and there are six minima in the entire

region 2π . The periodic instanton configuration is found to be

sin2(3φp) = 1 − k2 sn2(ω4τ, k) (43)

where

k =
√

1 − h̄E

2K ′
3V sin6 θ0

ω4 = 6
√

2
V

h̄S

√
K1K2 sin3 θ0.

Then the corresponding classical action is obtained as Sp = W + 2Eβ, with

W = 23/2

3

√
λS sin3 θ0

[
E(k)− (1 − k2)K(k)

]
. (44)

Therefore the low-lying energy shift of the nth excited level is found to be

h̄ �Ehen = 3 × 22

√
πn!

V

S

√
K1K2 sin3 θ0

(
27/2

3

√
λS sin3 θ0

)n+1/2

exp

(
−23/2

3

√
λS sin3 θ0

)
. (45)

The periodic potential U(φ) can be regarded as a one-dimensional superlattice with lattice
constant 1

3π and total length 2π . By applying the Bloch theorem and tight-binding approx-
imation, we obtain the energy level spectrum of the nth excited level Ehen = (n + 1

2 )ω4 as

Ehen = h̄Ehen − 2h̄ �Ehen cos
[π

3
(µ + ξ)

]
. (46)

In this case the crossover temperature characterizing the quantum–classical transition is

kBT
(2)

0 = 6
√

2
V

πS

√
K1K2 sin3 θ0. (47)

In brief, the low-lying energy level spectra of the magnetic tunnelling states for trigonal,
tetragonal, and hexagonal symmetry are found to depend on the parity of the total spins of the
single-domain FM nanoparticles, resulting from the Wess–Zumino–Berry phase interference
between topologically distinct tunnelling paths. And the crossover temperature characterizing
the quantum–classical transition is also obtained for each case.

5. Conclusions

In summary, we have investigated the spin-phase interference effects in the resonant quantum
tunnelling of the magnetization vector between excited levels for single-domain FM nano-
particles in the presence of a magnetic field along the hard-anisotropy axis. The system
considered in this paper has a general structure of the magnetocrystalline anisotropy, such
as one showing a biaxial, trigonal, tetragonal, or hexagonal symmetry. The low-lying tunnel
splittings between thenth degenerate excited levels of neighbouring wells are evaluated with the
help of the periodic instanton method in the spin-coherent-state path-integral representation.
The low-lying energy level spectrum of the nth excited level is obtained by applying the
Bloch theorem and the tight-binding approximation in the one-dimensional periodic potential.
This is the first complete study, to our knowledge, of spin-phase interference between excited
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levels and effects induced by a magnetic field on FM particles with a general structure of the
magnetocrystalline anisotropy.

One important conclusion is that for all of the four kinds of crystal symmetry considered,
the low-lying energy level spectrum depends on the spin parity significantly; this results from
the Wess–Zumino–Berry phase interference between topologically distinct tunnelling paths.
The structures of the low-lying tunnelling level spectra for trigonal, tetragonal, and hexagonal
symmetry are found to be much more complex than that for biaxial symmetry. The low-lying
energy level spectrum can be non-zero even if the total spin is a half-integer for the trigonal,
tetragonal, or hexagonal symmetry at zero magnetic field. Our study provides a generalization
of the Kramers degeneracy to coherent spin tunnelling in ground states as well as low-lying
excited states. An external magnetic field yields an additional contribution to the Berry phase,
resulting in an oscillating field dependence of the tunnel splittings for both the integer and half-
integer total spins. This oscillation effect can be tested with the use of existing experimental
techniques. Due to the topological nature of the Berry phase, these spin-parity effects are
independent of details such as the magnitudes of the total spins, the shape of the soliton,
and the tunnelling potential. And the tunnelling effect is enhanced by considering tunnelling
at the level of excited states. The transition from quantum tunnelling to thermal activation
is also studied. By calculating the oscillation period, we find a monotonically decreasing
behaviour of the period with increasing energy, which yields a second-order phase transition.
The crossover temperature characterizing the quantum–classical transition is obtained for each
case. Comparison with the numerical results gives strong support for the analytical calculations
presented in this paper. The heat capacity of low-lying magnetic tunnelling states is evaluated
and is found to depend significantly on the parity of total spins for FM particles at sufficiently
low temperature. This provides a possible experimental method for examining the theoretical
results on spin-phase interference effects. Our results presented here should be useful for
a quantitative understanding of the topological phase interference or spin-parity effects in
resonant quantum tunnelling of the magnetization in single-domain FM nanoparticles.

The theoretical calculations performed in this paper can be extended to single-domain
antiferromagnetic nanoparticles, where the relevant quantity is the excess spin due to the small
non-compensation of two sublattices. Work along these lines is still in progress. We hope that
the theoretical results obtained in the present work will stimulate more experiments whose
aim is observing the topological phase interference or spin-parity effects in resonant quantum
tunnelling of the magnetization in nanoscale single-domain ferromagnets.
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